Pattern-Avoiding Polytopes

Robert Davis
joint with Bruce Sagan

Michigan State University

1 August 2016
Let \mathfrak{S}_n denote the symmetric group on 1, 2, ..., n, $\pi \in \mathfrak{S}_k$ and $\sigma \in \mathfrak{S}_n$, written as words.

Definition

Say σ contains the pattern π if there is some substring of σ whose elements have the same relative order as those in π. If no such substring exists, then σ avoids the pattern π. If $\Pi \subseteq \mathfrak{S}$, then σ avoids Π if σ avoids every element of Π.

So 526413 does not avoid 132 while 453621 does.

Denote by

$$\text{Av}_n(\Pi) := \{ \sigma \in \mathfrak{S}_n \mid \sigma \text{ avoids } \Pi \}$$

the avoidance class of Π.
Pattern Avoidance

A simple yet difficult question: given Π, determine $|\text{Av}_n(\Pi)|$.

If $\pi = a_1 a_2 \ldots a_k$, call

$$\pi^r := a_k a_{n-1} \ldots a_1$$

the reversal of π and

$$\pi^c := (k - a_1 + 1)(k - a_2 + 1)\ldots(k - a_k + 1)$$

the complement of π. Then $|\text{Av}_n(\pi)| = |\text{Av}_n(\pi^r)| = |\text{Av}_n(\pi^c)|$.

Definition

Say π_1 and π_2 are **Wilf equivalent**, written $\pi_1 \equiv \pi_2$, if

$|\text{Av}_n(\pi_1)| = |\text{Av}_n(\pi_2)|$ for all n.

Wilf equivalence is an equivalence relation on \mathfrak{S}.
Pattern Avoidance

So $\pi \equiv \pi^r \equiv \pi^c$. In fact, π is Wilf equivalent to any permutation obtained by acting on its diagram by the dihedral group of the square. These are called the trivial Wilf equivalences.

Example

\[
\begin{align*}
4261573 & \equiv 4271536 & \equiv 4627315 & \equiv 2537164
\end{align*}
\]
Pattern Avoidance

Theorem (MacMahon (1915) and Knuth (1968))

If $\pi \in \mathfrak{S}_3$, then for all n, $|\text{Av}_n(\pi)| = C_n$, the n^{th} Catalan number.

Theorem (Erdős-Szekeres (1935))

For any positive integers a, b, every permutation of length at least $(a - 1)(b - 1) + 1$ contains the patterns $123 \ldots a$ or $b(b - 1)(b - 2) \ldots 1$.

Theorem (Billey, Burdzy, and Sagan (2012))

For all n, $|\text{Av}_n(132, 312)| = 2^{n-1}$.
Why study pattern avoidance?

- Stack-sortable permutations
 - A permutation is stack-sortable if and only if it avoids 231 (Knuth, 1968)

- Permutation statistics
 - Almost all known Mahonian permutation statistics really belong to a class of 14 statistics, if the use of vincular patterns is allowed (Babson and Steingrímsson, 2000)

- Classifying smooth / factorial / Gorenstein Schubert varieties using bivincular patterns (Úlfarsson, 2010)
Ehrhart Theory

Definition

For a lattice polytope $P \subseteq \mathbb{R}^n$, its **Ehrhart polynomial** is

$$\mathcal{L}_P(m) := |mP \cap \mathbb{R}^n|,$$

and its **Ehrhart series** is

$$E_P(t) := \sum_{m \geq 0} \mathcal{L}_P(m)t^m$$

$$= \frac{h^*_P(t)}{(1 - t)^{\dim P + 1}}.$$

The numerator $h^*_P(t)$ is the **h^*-polynomial** of P and its list of coefficients $h^*(P) := (h_0^*, \ldots, h_d^*)$ is the **h^*-vector** of P.
Two Big Questions

1. When is $h^*(P)$ palindromic?
 - This happens exactly when P is Gorenstein, a property that is often reasonably detectable if a hyperplane description of P is known.

2. When is $h^*(P)$ unimodal? Various sufficient conditions are known, but necessary conditions are not as clear.
Π-avoiding Permutahedra

Definition

The **permutohedron** is defined as

\[P_n := \text{conv}\{(a_1, \ldots, a_n) \in \mathbb{R}^n | a_1 \ldots a_n \in \mathcal{S}_n\}. \]

Some quick facts about \(P_n \):

1. invariant under the action of \(\mathcal{S}_n \)
2. simple zonotope
3. its Ehrhart polynomial is

\[\mathcal{L}_{P_n}(m) = \sum_{i=0}^{n-1} f_i^n m^i, \]

where \(f_i^n \) is the number of labeled forests on \(n \) vertices with \(i \) edges.
Π-avoiding Permutohedra

Definition

For $\Pi \subseteq \mathcal{S}$, define

$$P_n(\Pi) := \text{conv}\{ (a_1, \ldots, a_n) \mid a_1 \ldots a_n \in \text{Av}_n(\Pi) \}$$

to be the *Π-avoiding permutohedron*.

So if $\Pi = \emptyset$, then $P_n(\Pi) = P_n$.

Important note: this is not a subclass of generalized permutohedra introduced by Postnikov. This fact can be verified by comparing normal fans and using a theorem of Postnikov, Reiner, and Williams.
Π-avoiding Permutohedra

$P_n(\pi)$ is unimodularly equivalent to both $P_n(\pi^r)$ and $P_n(\pi^c)$. But that’s about where it stops.

Example (Trivial Wilf equivalence $\not\Rightarrow$ unimodular equivalence)

Choose $\pi = 1423$ and $\pi' = 2431$. These are related by a 90-degree rotation, but $P_5(\pi)$ has 48 facets while $P_5(\pi')$ only has 46.
Σ-avoiding Permutohedra

Theorem (D. and Sagan)

If \(\Pi = \{132, 312\} \), then \(P_n(\Pi) \) is a rectangular parallelepiped with Ehrhart polynomial

\[
\sum_{i=0}^{n-1} \frac{(n - 1)!}{(n - i - 1)!} m^i
\]

This extends the previous result \(| \text{Av}_n(132, 312) | = 2^{n-1} \).

Corollary

The number of interior lattice points of \(P_n(132, 312) \) is the number of derangements of \(\mathfrak{S}_{n-1} \).

(Follows from Ehrhart-Macdonald reciprocity)
Π-avoiding Permutohedra

Theorem (Beck, Jochemko, McCullough, in preparation)

Every lattice zonotope has a unimodal h^*-vector.

Corollary

For all n, $h^*(P_n(132, 312))$ is unimodal.
Theorem (D. and Sagan)

If $\Pi = \{123, 132\}$, then $P_n(\Pi)$ is a combinatorial (but not geometric!) cube with Ehrhart polynomial

\[
\frac{m+1}{(n-1)!} \prod_{j=2}^{n-1} (nm+j)
\]

($P_n(\Pi)$ is a Pitman-Stanley polytope)
Proposition (D. and Sagan)

If $\Pi = \{123, 132, 312\}$, then $P_n(\Pi)$ is a simplex with Ehrhart polynomial $(1 + m)^{n-1}$. Hence $h_P^*(t)$ is the Eulerian polynomial $A_{n-1}(t)$.

$P_n(123, 132, 312)$ is (unimodularly equivalent to) the simplex containing certain lecture hall partitions. Work of Corteel, Lee, and Savage imply the Ehrhart-theoretic results (an observation made by Ben Braun).
Π-avoiding Permutohedra

The results for the different avoidance classes were proven in very different ways.

This is common in the world of pattern avoidance.
Π-avoiding Birkhoff Polytopes

Definition

The $n \times n$ Birkhoff polytope is

$$B_n := \text{conv}\{M \in \mathbb{R}^{n \times n} \mid M \text{ a matrix for some } \sigma \in \mathfrak{S}_n\}$$

Some variations:

1. transportation polytopes
2. permutation polytopes (Burggraf, De Loera, Omar)
3. the “symmetric slice” of B_n (Stanley, Jia)
Definition

For $\Pi \subseteq S$, define

$$B_n(\Pi) := \text{conv}\{M \in \mathbb{R}^{n \times n} \mid M \text{ a matrix for some } \sigma \in \text{Av}_n(\Pi)\}$$

to be the Π-avoiding Birkhoff polytope.

This time, if $\pi \in S_k$ and π' are trivially Wilf equivalent, then $B_n(\pi)$ and $B_n(\pi')$ are unimodularly equivalent.
Alternating permutations

Definition

A permutation $a_1a_2\ldots a_n \in \mathfrak{S}_n$ is *alternating* if $a_1 < a_2 > a_3 < a_4 > a_5 < \ldots$.

Let $\widetilde{\text{Av}}_n(\Pi)$ denote the alternating permutations in \mathfrak{S}_n that avoid Π. Analogously define $\widetilde{B}_n(\Pi)$.

These could also be described as $B_n(\Pi)$ for an appropriate Π if we allow vincular patterns.

Our focus will be on the specific polytopes $B_n(132,312)$ and $\widetilde{B}_n(123)$.
Π-avoiding Birkhoff Polytopes

Proposition (D. and Sagan)

For all n,

$$\dim B_n(132, 312) = \binom{n}{2}$$

and

$$\dim \tilde{B}_n(123) = \binom{\lceil n/2 \rceil}{2}$$

Beyond knowing the number of vertices of each, the combinatorial structures of these are completely unknown.
Theorem (Stanley (1970s), Athanasiadis (2005))

For all n, $h^*(B_n)$ is palindromic and unimodal.

What can we say about $h^*(B_n(\Pi))$?
Main Conjecture

Conjecture (D. and Sagan)

The h^*-vectors of $B_n(132, 312)$ and $\tilde{B}_n(123)$ are palindromic and unimodal.

Broad strategy:

1. Show that these polytopes have regular, unimodular triangulations
2. Show that these polytopes are Gorenstein
The posets $Q_n(\Pi)$ and $\tilde{Q}_n(\Pi)$

Definition

The right weak (Bruhat) order on \mathfrak{S}_n is defined as $\sigma < \sigma'$ if $\sigma' = \sigma s_i$ for some simple transposition s_i and σ' has more inversions than σ. The left weak (Bruhat) order is defined analogously.

Let $Q_n(132, 312)$ be the poset on $\mathcal{A}v_n(132, 312)$ induced from the right weak order on \mathfrak{S}_n, and $\tilde{Q}_n(123)$ to be the poset on $\tilde{\mathcal{A}}v_n(123)$ induced from the left weak order on \mathfrak{S}_n.
Examples: $Q_5(132, 312)$ and $\tilde{Q}_8(123)$
The posets $Q_n(\Pi)$ and $\tilde{Q}_n(\Pi)$

Theorem (D. and Sagan)

The following isomorphisms hold:

$$Q_n(132, 312) \cong M(n - 1),$$

where $M(k)$ is the lattice of shifted Young diagrams with largest part at most k, and

$$\tilde{Q}_n(123) \cong D^*[n/2],$$

where D_k is the lattice of Dyck paths of length $2k$ such that if $d_1, d_2 \in D_k$, then $d_1 < d_2$ if d_1 lies entirely underneath d_2.
From here, we want to use the following facts:

- distributive lattices have EL-labelings
- posets with EL-labelings have shellable order complexes
- given a lattice polytope with a shellable unimodular triangulation, its h^*-vector can be computed based on information about the shelling order

Goal: show that the order complexes of $Q_n(132, 312)$ and $\tilde{Q}_n(123)$ induce shellable unimodular triangulations of $B_n(132, 312)$ and $\tilde{B}_n(123)$.
The Commutative Algebra

Conjecture (D. and Sagan)

$B_n(132, 312)$ and $\tilde{B}_n(123)$ have flag, regular unimodular triangulations.

Theorem (Sturmfels)

For a lattice polytope P, the initial ideals of the toric ideal I_P are in bijection with the regular triangulations of P. The initial ideal of I_P is squarefree if and only if the corresponding triangulation of P is unimodular.
Watermelons, Stars, and Fermi Configurations

Definition

A watermelon $\overline{W}_{l,k}$ is the digraph with vertices

$$\{(i, j) \in \mathbb{Z}^2 \mid 0 \leq i \leq l, 0 \leq j \leq k, j \leq i\}$$

with an arc from a to b if $b - a \in \{-e_1, -e_2\}$. A star graph S_n is the graph whose vertex set is

$$\{(i, j) \in \mathbb{Z}^2 \mid i, j \geq 0, i + j \leq n\}$$

with arcs formed the same way as with watermelons.

To make later definitions simpler, we introduce a unique sink v for S_n by including an arc from the points $(-i, -n + i)$ to v.
Examples: $\overline{W}_{4,3}$ and S_3
Definition

A **Fermi configuration** in a digraph H with source u and sink v is a collection of distinct, noncrossing paths from u to v. A Fermi configuration is **maximal** if no additional distinct noncrossing paths from u to v can be included in the configuration.

Example (A maximal Fermi configuration in $\overline{W}_{3,2}$)

![Diagram of a maximal Fermi configuration]
Watermelons, Stars, and Fermi Configurations

Definition

A triple of adjacent paths in a maximal Fermi configuration is called a **flipflop** if the two 2-dimensional faces it bounds share no edges of the central path. If the central path goes to the right of the first 2-dimensional face it encounters, then the path is called **flopped**. Otherwise, it is **flipped**.

Example

The configuration on the previous slide contains the flopped walk \((p_2, p_3, p_4)\) but no flipped walks.
Theorem (Arrowsmith, Bhatti, and Essam (2012))

Suppose H is a digraph with unique source and sink, and that H has a unique minimal-cardinality Fermi configuration covering all of its arcs. Let $\varphi_k(H)$ denote the number of maximal Fermi configurations in H that contain k flopped walks. Then the polynomial

$$\Phi(H; t) = \sum_{i \geq 0} \varphi_k(H)t^k$$

has palindromic coefficients.
Sagan and I have shown that if the previously-mentioned conjecture holds, then $\Phi(S_n; t)$ is the h^*-polynomial for $B_n(132, 312)$ and $\Phi(\overline{W}_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}; t)$ is the h^*-polynomial for $\tilde{B}_n(123)$.

It appears that the coefficients of $\Phi(\overline{W}_{k,m}; t)$ are unimodal for all k and m, but it is not immediately obvious how to choose Π so that $\Phi(\overline{W}_{k,m}; t) = B_n(\Pi)$ (or if any such Π exists)
Open Questions

1. Is there a nice combinatorial proof for the number of interior lattice points of $P_n(132, 312)$?

2. For “nice” special classes of Π,
 - what is the combinatorial structure of $P_n(\Pi)$ or $B_n(\Pi)$?
 - what is $\text{Vol}(P_n(\Pi)), \text{Vol}(B_n(\Pi))$?
 - what is the Ehrhart polynomial for $P_n(\Pi)$?
 - what is the h^*-vector of $B_n(\Pi)$?

3. What happens if we consider classes of vincular or bivincular patterns?

4. For which choices of Π is $B_n(\Pi)$ IDP? Gorenstein?

5. What are the homotopy types of $Q_n(\Pi)$? (in general their order complexes aren’t necessarily spheres, or even Cohen-Macaulay)