Critical exponent for the Cauchy problem to the weakly coupled damped wave system

Yuta Wakasugi (Osaka University)

Asymptotic Analysis for Nonlinear Dispersive and Wave Equations
In honor of Professor Nakao Hayashi’s 60th birthday
September 10, 2014

Joint work with Kenji Nishihara (Waseda University)
1 Introduction

2 Main results

3 Idea of the proof
Weakly coupled system

Weakly coupled system of damped wave equations

\[
\begin{align*}
(u_{tt} - \Delta u + u_t &= |v|^p, \\
v_{tt} - \Delta v + v_t &= |u|^q, \\
(u, u_t, v, v_t)(0, x) &= \varepsilon(u_0, u_1, v_0, v_1)(x).
\end{align*}
\]

- \(u = u(t, x), v = v(t, x) \): real-valued unknown functions,
- \(t \in (0, \infty), x \in \mathbb{R}^N, N \geq 1, \)
- \(p, q > 1, \)
- \((u_0, u_1, v_0, v_1) \in [H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N)]^2 : \text{compactly supported}, \)
- \(\varepsilon > 0. \)
Weakly coupled system of damped wave equations

\[
(\text{DW}) \quad \begin{cases}
 u_{tt} - \Delta u + u_t = |v|^p, \\
 v_{tt} - \Delta v + v_t = |u|^q,
\end{cases}
\]

\[
(u, u_t, v, v_t)(0, x) = \varepsilon(u_0, u_1, v_0, v_1)(x).
\]

Goal: to prove that

\[
\alpha := \max \left\{ \frac{p + 1}{pq - 1}, \frac{q + 1}{pq - 1} \right\} = \frac{N}{2}
\]

is critical for any dimension \(N \geq 1 \). The word “critical” means

\[
\alpha < \frac{N}{2} \Rightarrow \text{Small data global existence (SDGE)};
\]

\[
\alpha \geq \frac{N}{2} \Rightarrow \text{Blow-up in finite time}.
\]
Related results (1) : single semilinear problem

Diffusion phenomenon

The solution of the damped wave equation

\[u_{tt} - \Delta u + u_t = 0 \]

behaves like that of the heat equation

\[v_t - \Delta v = 0 \]

as \(t \to +\infty \).

For the semilinear damped wave equation

\[u_{tt} - \Delta u + u_t = |u|^p, \]

Todorova-Yordanov (2001), Qi S. Zhang (2001) proved that \(p = \rho_F(N) := 1 + 2/N \) is critical, namely,

\[p > \rho_F(N) \Rightarrow \text{SDGE}; \]
\[1 < p \leq \rho_F(N) \Rightarrow \text{Blow-up}. \]

For the system of heat equations

\[
\begin{align*}
 u_t - \Delta u &= |v|^p, \\
 v_t - \Delta v &= |u|^q,
\end{align*}
\]

Escobedo-Herrero (1991) proved that \(\alpha = \max\left\{ \frac{p+1}{pq-1}, \frac{q+1}{pq-1} \right\} = \frac{N}{2} \) is critical.

For (DW):

\[
\begin{align*}
 u_{tt} - \Delta u + u_t &= |v|^p, \\
 v_{tt} - \Delta v + v_t &= |u|^q,
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>SDGE</th>
<th>Blow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Narazaki (2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nishihara (2012)</td>
<td></td>
</tr>
<tr>
<td>(N \geq 4)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Takeda (2009), Ogawa-Takeda (2010, 2011): SDGE and asymptotic profile for General strongly coupled systems \((N \leq 3) \).
1 Introduction
2 Main results
3 Idea of the proof
Main results (1)

\[
\begin{align*}
 u_{tt} - \Delta u + u_t &= |v|^p, \\
 v_{tt} - \Delta v + v_t &= |u|^q, \\
 (u, u_t, v, v_t)(0, x) &= \varepsilon(u_0, u_1, v_0, v_1)(x),
\end{align*}
\]

where \((u_0, u_1, v_0, v_1) \in \left[H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N)\right]^2\) : compactly supported.

Let

\[X(T) := C([0, T); H^1(\mathbb{R}^N)) \times C^1([0, T); L^2(\mathbb{R}^N)).\]

Theorem 1

If \(1 < p \leq q < \infty (N = 1, 2), 1 < p \leq q \leq \frac{N}{N - 2} (N \geq 3),\) and

\[\alpha = \frac{q + 1}{pq - 1} < \frac{N}{2},\]

then \(\exists \varepsilon_0 > 0\) s.t. \(\forall \varepsilon \in (0, \varepsilon_0], \exists! (u, v) \in X(\infty)^2 :\) solution to (DW).
Let

\[T_\varepsilon = \sup \{ T \in (0, \infty) \mid \exists! (u, v) \in X(T)^2 : \text{sol. to (DW)} \} \].

Theorem 2

If \(1 < p \leq q < \infty \) (\(N = 1, 2 \)), \(1 < p \leq q \leq \frac{N}{N-2} \) (\(N \geq 3 \)),

\[\alpha = \frac{q + 1}{pq - 1} > \frac{N}{2}, \]

and \(\int_{\mathbb{R}^N} (u_0(x) + u_1(x))dx > 0 \), \(\int_{\mathbb{R}^N} (v_0(x) + v_1(x))dx > 0 \), then

\[\exists C > 0 \text{ s.t. } \forall \varepsilon \in (0, 1], \]

\[T_\varepsilon \leq C\varepsilon^{-1/\kappa}, \]

where

\[\kappa = \alpha - \frac{N}{2} = \frac{q + 1}{pq - 1} - \frac{N}{2}. \]
1 Introduction

2 Main results

3 Idea of the proof
Idea of the proof: global existence part

Observation for the optimal decay rate (Nishihara (2012))

+ Weighted energy method (Todorova-Yordanov (2001))
Idea of the proof: global existence part

\[q(p - \frac{2}{N}) = \rho_F(N) \]

\[\alpha = \frac{q + 1}{pq - 1} < \frac{N}{2} \iff q(p - \frac{2}{N}) > \rho_F(N) = 1 + \frac{2}{N}. \]

Therefore, it suffices to consider the case where

\[\max \left\{ 1, \frac{2}{N} \right\} < p \leq \rho_F(N) < q. \]
Idea of the proof: global existence part

WLOG we may assume $1 < p \leq q$

Note that

$$\alpha = \frac{q + 1}{pq - 1} < \frac{N}{2} \iff q(p - \frac{2}{N}) > \rho_F(N) = 1 + \frac{2}{N}.$$

Therefore, it suffices to consider the case where

$$\max \left\{ 1, \frac{2}{N} \right\} < p \leq \rho_F(N) < q.$$
Idea of the proof: global existence part

Note that \[\alpha = \frac{q + 1}{pq - 1} < \frac{N}{2} \iff q(p - \frac{2}{N}) > \rho_F(N) = 1 + \frac{2}{N}. \]

Therefore, it suffices to consider the case where

\[\max \left\{ 1, \frac{2}{N} \right\} < p \leq \rho_F(N) < q. \]
The diagram illustrates the function $\rho_F(N)$ and the inequality $q(p - \frac{2}{N}) = \rho_F(N)$. Note that $\alpha = \frac{q + 1}{pq - 1} < \frac{N}{2} \iff q(p - \frac{2}{N}) > \rho_F(N) = 1 + \frac{2}{N}$.

Therefore, it suffices to consider the case where

$$\max \left\{ 1, \frac{2}{N} \right\} < p \leq \rho_F(N) < q.$$
Let us assume
\[
\max \left\{ 1, \frac{2}{N} \right\} < p < \rho_F(N) < q
\]
and consider the integral equation
\[
u(t) = e^{t\Delta}u_0 + \int_0^t e^{(t-s)\Delta} |v(s)|^p \, ds.
\]
Now we assume
\[
\|v(t)\|_{L^r} \leq C(1 + t)^{-\frac{N}{2} \left(1 - \frac{1}{r}\right)} \quad (1 \leq r \leq \infty).
\]
Then we see that
\[
\|u(t)\|_{L^r} \leq C(1 + t)^{-\frac{N}{2} \left(p - \frac{2}{N} - \frac{1}{r}\right)} \quad (1 \leq r \leq \infty),
\]
namely, \(\|u(t)\|_{L^1}\) may grow up and \(\|u(t)\|_{L^\infty}\) decays to 0.
In particular, we expect that
\[
\|u(t)\|_{L^2}^2 \leq C(1 + t)^{-N(p - \frac{2}{N} - \frac{1}{2})},
\]
\[
\|v(t)\|_{L^2}^2 \leq C(1 + t)^{-\frac{N}{2}}.
\]

Taking this into account, we define the weighted energy of \((u, v)\) by
\[
W_u(t) = (1 + t)^{N(p - \frac{2}{N} - \frac{1}{2}) + 1 - \delta(p + 1)} \left(\|e^{\psi(t, \cdot)} u_t(t)\|_{L^2}^2 + \|e^{\psi(t, \cdot)} \nabla u(t)\|_{L^2}^2 \right)
\]
\[
+ (1 + t)^{N(p - \frac{2}{N} - \frac{1}{2}) - \delta(p + 1)} \|e^{\psi(t, \cdot)} u(t)\|_{L^2}^2,
\]
\[
W_v(t) = (1 + t)^{\frac{N}{2} + 1 - \delta} \left(\|e^{\psi(t, \cdot)} v_t(t)\|_{L^2}^2 + \|e^{\psi(t, \cdot)} \nabla v(t)\|_{L^2}^2 \right)
\]
\[
+ (1 + t)^{\frac{N}{2} - \delta} \|e^{\psi(t, \cdot)} v(t)\|_{L^2}^2,
\]
where \(\delta > 0\),
\[
\psi(t, x) = \frac{|x|^2}{4(2 + \lambda)(1 + t)}, \quad \lambda > 0,
\]
Idea of the proof: weighted energy method (2)

Let

\[M(t) = \sup_{s \in [0,t]} (W_u(s) + W_v(s)). \]

Multiplying (DW) by \(e^{2\psi} u_t \) and \(e^{2\psi} u \), respectively, we have

\[
\frac{1}{2} \frac{d}{dt} \int e^{2\psi} (u_t^2 + |\nabla u|^2) dx + \int e^{2\psi} \left(1 + (-\psi_t) + \frac{|
abla \psi|^2}{-\psi_t} \right) u_t^2 dx
\]

\[
+ \int \frac{e^{2\psi}}{-\psi} \left| \psi_t \nabla u - u_t \nabla \psi \right|^2 dx = \int e^{2\psi} |v|^p u_t dx,
\]

\[
\frac{d}{dt} \int e^{2\psi} (uu_t + \frac{u^2}{2}) dx + \int e^{2\psi} ((-\psi_t) + 2|\nabla \psi|^2 + \Delta \psi) u^2 dx
\]

\[
+ \int e^{2\psi} \left(|\nabla u + 2u\nabla \psi|^2 - 2\psi_t uu_t - u_t^2 \right) dx = \int e^{2\psi} |v|^p u dx.
\]

The positive terms give the decay of weighted energy and \(L^2 \)-norm.

From them, we obtain the a priori estimate

\[M(t) \leq C \varepsilon^2 + C(M(t)^p + M(t)^{(p+1)/2} + M(t)^q + M(t)^{(q+1)/2}). \]
General weakly coupled systems (cf. Takeda (2009, $N \leq 3$))

$$
\begin{align*}
(\partial_t^2 - \Delta + \partial_t)u_1 &= |u_k|^{p_1}, \\
(\partial_t^2 - \Delta + \partial_t)u_2 &= |u_1|^{p_2}, \\
&\, \quad \quad \quad \vdots \\
(\partial_t^2 - \Delta + \partial_t)u_k &= |u_{k-1}|^{p_k}.
\end{align*}
$$

How to observe the optimal decay rates?

$$
\begin{align*}
u_{tt} - \Delta u + u_t &= |u|^{p_{11}}|v|^{p_{12}}, \\
v_{tt} - \Delta v + v_t &= |u|^{p_{21}}|v|^{p_{22}}.
\end{align*}
$$

How to prove the blow-up of solutions?